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In this paper we present a generalized approach for the harmonic analysis of the magnetic field in accelerator magnets. This
analysis is based on the covariant components of the computed or measured magnetic flux density. The multipole coefficients obtained
in this way can be used for magnet optimization and field reconstruction in the interior of circular and elliptical boundaries in the
aperture of straight magnets.
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I. INTRODUCTION

THE FIELD quality in magnet apertures, or any domain
that is free of currents and magnetized material, is con-

veniently described by a set of Fourier coefficients of the field
solution, subsequently denoted field harmonics. One of the
objectives in magnet design optimization, using numerical field
computation tools, is to suppress the unwanted harmonics as
much as possible [1]. The field harmonics are determined from
a measured flux linkage or a computed magnetic flux density
on the boundary of the domain of interest, which is chosen
as the coordinate line of a suitable coordinate system. These
coefficients give a series representation of the Dirichlet data
on the boundary, from which the field in the entire domain
of interest can be restored by harmonic extension. Technically,
this is accomplished by comparing coefficients with a general
solution of the Laplace equation, which has been obtained by
separation of variables.

The goal of this paper is to show that the underlying
methodology is the same in all two-dimensional cases where
the coordinate system is obtained by conformal mapping from
Cartesian coordinates, and provided that a sufficiently general
approach is adopted that allows to deal with the different
representations of the metric. We briefly recall the situation in
polar coordinates because they are the most commonly used
for the computation of fields in long accelerator magnets. We
show a generalization of the method to elliptic coordinates,
which are more suited to magnets where the beam pipe
is not circular, e.g., insertion devices for synchrotron light
sources. This facilitates the optimization process in numerical
field computation as well as its verification by magnetic field
measurements.

II. CIRCULAR FIELD HARMONICS

A general solution that satisfies the Laplace equation,
∆Az = 0, can be found by the separation of variables
method. As the vector potential is single-valued, it must
be a periodic function in ϕ. Let us further consider the
magnet aperture as the problem domain and incorporate the

condition that the flux density is finite at r = 0. The gen-
eral solution for the vector potential can then be written as
Az(r, ϕ) =

∑∞
n=1 r

n(An sinnϕ+Bn cosnϕ). The field com-
ponents can then be expressed as a function of the coefficients
An and Bn, which yields in case of the radial component
Br(r, ϕ) = 1

r
∂Az

∂ϕ =
∑∞
n=1 nr

n−1(An cosnϕ − Bn sinnϕ),
in Ωa. Notice the appearance of the metric coefficient 1/r
in the derivative of the vector potential. Each value of the
integer n in the solution of the Laplace equation corresponds
to a specific flux distribution generated by ideal magnet ge-
ometries. Assuming that the radial component of the magnetic
flux density is measured or calculated at a reference radius
r = r0 as a function of the angular position ϕ, we obtain
the Fourier series expansion of the radial field component,
that is, Br(r0, ϕ) =

∑∞
n=1

(
Bn(r0) sinnϕ + An(r0) cosnϕ.

Comparing the coefficients in the two expressions for the
Br components we obtain An = (1/n rn−10 )An(r0) and
Bn = (−1/n rn−10 )Bn(r0). Thus the radial field component
in the entire domain Ωa can be expressed as Br(r, ϕ) =∑∞
n=1(r/r0)n−1

(
Bn(r0) sinnϕ+An(r0) cosnϕ

)
. The normal

and skew multipole coefficients Bn(r0), An(r0) are given in
units of Tesla at a reference radius r0, usually chosen to about
2/3 of the magnet aperture [1]. In numerical field computation,
it is useful to perform a Fourier analysis of the vector potential
on the reference radius, thus avoiding the calculation of the flux
density by means of numerical differentiation. Fourier series
expansion of the magnetic vector potential at a reference radius
r0 yields Az(r0, ϕ) =

∑∞
n=1

(
Cn(r0) sinnϕ+Dn(r0) cosnϕ

)
.

Comparing the coefficients with the earlier expressions we ob-
tain Bn(r0) = −(n/r0)Dn(r0) and An(r0) = (n/r0)Cn(r0).
The curl operator acting on vector fields has thus been replaced
by scaling laws of the corresponding Fourier series. Similar
expressions can be derived for the magnetic scalar potential
φm.

In general, any 2π-periodic signal can be transformed,
using the discrete Fourier transform, into an expres-
sion

∑∞
n=1(Cn(r0) sinnϕ + Dn(r0) cosnϕ). Table I re-

lates the Fourier coefficients Cn, Dn, of the signals
Br, Bϕ, Az, φm, Bx, By to the multipoles Bn, An according



to the definition above. This technique cannot be applied

TABLE I
RELATIONS BETWEEN THE MULTIPOLE COEFFICIENTS AND THE FOURIER

COEFFICIENTS OF THE EXPANSION OF Br, Bϕ, Bx, By , AND Az , φm .

Br Bϕ Bx By Az φm
Bn = Cn Dn Cn−1 Dn−1

−nDn
r0

−nµ0Cn
r0

An = Dn −Cn Dn−1 −Cn−1
nCn
r0

−nµ0Dn
r0

directly to elliptical domains, because the metric coefficients
depend on both coordinates and the field harmonics cannot be
computed by a simple comparison of coefficients. A method
to circumvent this problem is presented in the next section.

III. COVARIANT COMPONENTS IN PLANE ELLIPTIC
COORDINATES

Consider a plane ellipse, centered at the origin, with major-
semi axis a and minor-semi axis b. A system of elliptic coordi-
nates is defined by the mapping T : R2 → R2 : (η, ψ) 7→ (x, y)
according to x = e cosh η cosψ, and y = e sinh η sinψ, where
e =
√
a2 − b2 is the distance between the origin and the focal

points. For the reference ellipse with semi axes b = e sinh η0
and a = e cosh η0 it follows that η0 = artanh(b/a) for
a > b. The metric coefficients for the elliptic coordinates are
h21 = h22 = e2(cosh2 η − cos2 ψ). Written in plane elliptic
coordinates, the Laplace equation for the vector potential takes
the form: ∆Az = (e2(cosh2 η−cos2 ψ))−1

(
∂2Az

∂η2 + ∂2Az

∂ψ2

)
=

0. It is shown in [3] that a complete system of or-
thogonal eigenfunctions is given by cosnψ coshnη and
sinnψ sinhnη. The general solution can therefore be written as
Az(η, ψ) =

∑∞
n=1 (An sinhnη sinnψ + Bn coshnη cosnψ).

The components of the magnetic flux density are calculated
from the vector potential by Bη = 1

h2

∂Az

∂ψ and Bψ =

− 1
h1

∂Az

∂η . Substituting these expressions into the above equa-
tion we obtain: Bη(η, ψ) = 1

h2

∑∞
n=1(nAn sinhnη cosnψ −

nBn coshnη sinnψ).
The field component Bη can be obtained from the (numeri-

cally calculated or measured) Cartesian components by Bη =
1/h1 (e sinh η cosψBx + e cosh η sinψBy). At the reference
ellipse η = η0, we can formally obtain the Fourier series expan-
sion Bη(η0, ψ) =

∑∞
n=1 (Bn(η0) sinnψ +An(η0) cosnψ).

However, the coefficients in the two series expressions
cannot be identified as in the case of the circular harmonics,
because the metric coefficient h2 is a function of ψ. To
overcome this problem we define the field components B̃η
and B̃ψ by the coordinate derivative without metric coef-
ficients B̃η = ∂Az

∂ψ , and B̃ψ = −∂Az

∂η . This corresponds
to taking the exterior derivative in differential-form calcu-
lus and results in covariant components of the magnetic
flux density. B̃η can then be expressed as B̃η(η, ψ) =∑∞
n=1 (nAn sinhnη cosnψ − nBn coshnη sinnψ).
At the reference ellipse, η = η0, the field component B̃η

can now be calculated from the Cartesian components
by B̃η = e sinh η cosψBx + e cosh η sinψBy
and expressed as the Fourier series B̃η(η0, ψ) =∑∞
n=1

(
B̃n(η0) sinnψ + Ãn(η0) cosnψ

)
, where Ãn(η0)

and B̃n(η0) are the ordinary Fourier coefficients of the
B̃η field component. Comparing the coefficients in the two
series expressions yields An = (n sinhnη0)−1Ãn(η0), and
Bn = −(n coshnη0)−1B̃n(η0). To avoid the calculation of the
flux density by numerical differentiation, it is again possible
to perform a Fourier series expansion of the vector potential at
the reference ellipse, i.e., the magnetic flux density is directly
expressed as a function of the multipoles obtained from the
series expansion of the vector potential at η0.

Fig. 1. Left: Numerically calculated field distribution between the poles of a
dipole magnet. Middle and right: Field calculated from the truncated series.
Middle: Elliptic coordinates (n = 40, a = 70 mm, b = 30 mm). Right: Circular
coordinates (n = 40, r0 = 30 mm).

Fig. 1 (left) shows the numerically calculated field between
the poles of a dipole magnet. The field resulting from the
truncated series is shown in the middle. Notice how numerical
errors dominate the field solution outside of the reference
ellipse; all field vectors that deviate by more than 20% in
amplitude are omitted from the plot. The advantage of the
elliptic multipole expansion is obvious from the comparison
with the truncated series of the circular multipole expansion
(right). The effect of the fringe field is better modeled in
the elliptic coordinate system and thus the elliptic multipole
coefficients are better suited to the optimization of dipole
magnets with a large aspect ratio of their air gaps.

We have thus found a convenient way to describe the field
imperfections in accelerator magnets. We have been able to
reconstitute the field in the entire aperture of the magnet from
measurements on its circular or elliptic boundary and derived
the scaling laws to limit the field evaluation to the boundary of
the problem domain and use only the vector potential, without
the need for numerical differentiation.

Moreover, this technique allows us to measure the multipoles
by means of the oscillating-wire method [2], whereby a wire
is stretched between two precision stages allowing to position
the wire step-by-step on k = 0, · · · ,K − 1 generators of
a cylindrical or elliptical domain encompassing the magnet
aperture. When the wire is fed by a sinusoidal current, the
resulting oscillation amplitudes will become a 2π-periodic
function of the position, which can then be treated with the
discrete Fourier transform.
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